Monatshefte für Chemie Chemical Monthly

© by Springer-Verlag 1983

Gold(III) and Platinum(II) Complexes of Hexamethylenetetramine

Nikos Katsaros^{a,*}, John M. Tsangaris^b, and George M. Tsangaris^c

- a Chemistry Department, Nuclear Research Center "Demokritos", Aghia Paraskevi, Athens, Greece
 - b Chemistry Department, University of Ioannina, Ioannina, Greece
 - ^c Chemistry Department, Technical University of Athens, Athens, Greece

(Received 14 July 1982. Accepted 7 September 1982)

Gold(III) trichloride and platinum(II) dichloride form 1:1 complexes with hexamethylenetetramine. The compounds prepared were characterized by the elemental analysis, infrared, *Raman*, ¹H-NMR, and ¹³C-NMR spectroscopy, and conductivity measurements.

[Keywords: Gold(III)trichloride; Hexamethylenetetramine; Infrared; NMR spectroscopy; Platinum(II) dichloride]

Gold (III) - und Platin (II) - Komplexe mit Hexamethylentetramin

Gold(III)trichlorid und Platin(II)dichlorid bilden mit Hexamethylentetramin 1:1-Komplexe. Die isolierten Verbindungen wurden mittels Elementaranalyse, IR, *Raman*, ¹H- und ¹³C-NMR und Leitfähigkeitsmessungen charakterisiert.

Introduction

It has been known that hexamethylenetetramine (hmta = 1, 3, 5, 7 tetraazatricyclo[3.3.1.1]decane) forms a number of complexes with transition metal ions¹⁻³. With some hydrated metal salts hexamethylenetetramine forms molecular complexes of the type $M(\text{ClO}_4)_2 \cdot 8 \text{ H}_2\text{O} \cdot 2 \, hmta \ (M = \text{Mg}, \text{Ca}, \text{Sr}, \text{Ba}, \text{Zn}, \text{Cd}, \text{Co} \text{ and Ni}) \ (\text{Ref}.^{10}).$ Kovacs et al. found by X-ray analysis that the crystals of $\text{Mg}(hmta)_2\text{Cl}_2 \cdot 10 \text{ H}_2\text{O}$ and $\text{Ca}(hmta)_2\text{Br}_2 \cdot 10 \text{ H}_2\text{O}$ belong to the triclinic system and these complexes are formulated as $[M(\text{H}_2\text{O})_6X_2] \cdot 2 \, hmta \cdot 4 \, \text{H}_2\text{O} \ (\text{Ref}.^{4,5})$, while the complexes $\text{Co}X_2(hmta) \cdot 6 \, \text{H}_2\text{O}$ and $\text{Ni}X_2(hmta) \cdot 6 \, \text{H}_2\text{O}$ are formulated as $[M(\text{H}_2\text{O})_4X_2] \cdot (hmta) \cdot 2 \, \text{H}_2\text{O} \ (\text{Ref}.^{1})$. Buhannic and Guerchais⁶ assigned

the infrared bands of the complexes $MX_2(hmta)$ and $MX_2(hmta)_2$ [M = Co(II), Zn(II), X = halide pseudohalide ions] to various vibrational modes of hmta indicating that the T_d symmetry of free hmta is lowered to C_{3v} symmetry in $MX_2(hmta)_2$ and C_{2v} in $MX_2(hmta)$. Hexamethylenetetramine is potentially a tetradentate ligand; stereochemically, it is more likely to act as a bridging group rather than a chelate. In a number of complexes of transition metal ions with hexamethylenetetramine spectroscopic studies indicated that the metal ion is interacting directly with a nitrogen of the ligand $^{7-10}$. In the complexes with Cu(II), Cd(II), Hg(II), and Ag(I) these results have been verified recently by X-ray crystallography $^{11-13}$.

Gold complexes of nitrogen donors play an important role in modern chrysotherapy^{14,15} and platinum complexes of nitrogen donors are also of biological interest because of their antitumor and antibacterial activity^{16,17}. This work describes an investigation into the preparation of gold trichloride and platinum dichloride complexes of hexamethylenetetramine. Their infrared spectra are examined and structural implications considered by comparison with the spectra of related complexes whose crystal structures have been determined recently.

Experimental

Hexamethylenetetramine (Merck), $\mathrm{HAuCl_4} \cdot x\mathrm{H_2O}$ (Riedel-deHaen AG) $\mathrm{K_2PtCl_4}$ (Fluka AG) were reagent grade and used without further purification. The complexes were prepared by mixing equimolar aqueous solutions of the corresponding metal salts with the hexamethylenetetramine solution. From this mixture the complexes were precipitated immediately, washed with alcohol, ether, and dried under high vacuum. The gold complex was also prepared by mixing equimolar aqueous or methanolic solutions of $\mathrm{HAuCl_4} \cdot x\mathrm{H_2O}$ with the respective hexamethylenetetramine solution.

Infrared spectra (4 000–200 cm⁻¹) in potassium bromide discs were recorded with a Perkin-Elmer Model 521 Grating Spectrophotometer. The $^1\mathrm{H}$ and $^{13}\mathrm{C}\,\mathrm{NMR}$ spectra were measured in d_6 -DMSO using an XL-100-15 NMR spectrometer. The chemical shifts are related to TMS as internal standard at ambient temperatures. Conductivity measurements were carried out in DMSO at 25 °C by means of an E 365 B conductoscope, Metrohm Ltd., Herisau, Switzerland.

Results and Discussion

The complexes prepared, their elemental analysis and other physical properties are listed in Table 1. $PtCl_2(hmta) \cdot 2 H_2O$ was insoluble in water and all other common organic solvents; $AuCl_3(hmta)$ was considerably soluble in dimethylsulfoxide. Conductivity data of the gold

Table 1. Analytical data for gold(III) and platinum(II) complexes

			Ane	Analysis Found $(calcd.)\%$	nd	$egin{aligned} ext{Molar Conductance} \ ext{in } DMSO \ ext{Ohm}^{-1} ext{cm}^2 ext{mol}^{-1} \end{aligned}$	Chemical Shifts (ppm) in d_{e} - $DMSO$	fts
Compound	Color	m.p. (°C)	٥	H	z	$c=1 \times 10^{-3}$ at $25^{\circ}\mathrm{C}$	- 1	್ಲ
$\rm PtCl_2C_6H_{12}N_4\cdot 2H_2O$	yellow	240 (dec)	16.4	3.8 8.8	12.4			
			(16.3)	(3.6)	(12.7)			
$\mathrm{AuCl_3C_6H_{12}N_4}$	orange	145	16.3	2.5	12.6	35	4.95	78.2
			(16.2)	(2.7)	(12.6)			
$\mathrm{C}_{6}\mathrm{H}_{12}\mathrm{N}_{4}$							4.55 74	

hmta	Vibration Type	$\operatorname{PtCl}_2(hmta) \cdot 2\operatorname{H}_2\operatorname{O}$	$AuCl_3(hmta)$
$1238\mathrm{vs}$	CN stretch	1 260 vs 1 235 vs 1 215 sh	1 265 vs 1 230 vs
$1009\mathrm{vs}$	CN stretch	$1030\mathrm{vs}$ $990\mathrm{vs}$	1 020 vs 995 vs
$812\mathrm{vs}$	CH_2 rock.	$825\mathrm{s}$ $760\mathrm{vs}$	$820\mathrm{s}$ $750\mathrm{vs}$
$672\mathrm{vs}$	CNC def.	$690\mathrm{s}$ $640\mathrm{ms}$	$710\mathrm{m}$ $640\mathrm{s}$
511 vs	skel. def.	$530\mathrm{ms}$ $510\mathrm{m}$	$540\mathrm{m}$ $505\mathrm{ms}$
	Pt-Cl	$325\mathrm{s}$	
	Au—Cl		$350\mathrm{s}$
	Au—N		$305\mathrm{w}$

Table 2. Some characteristic infrared frequencies of metal complexes with hexamethylenetetramine

compound suggested a 1:1 electrolyte but the conductivity values are increasing with time indicating an interaction with the solvent.

Infrared data of PtCl₂(hmta) · 2 H₂O and AuCl₃(hmta) are recorded in Table 2. Hexamethylenetetramine has T_d symmetry and only the fundamentals of the triply degenerate state T₂ are infrared active¹⁹. Gold and platinum 1:1 complexes usually exhibit tetragonal structures reducing the T_d symmetry of hexamethylenetetramine to effectively C_{3v}. Thus the fundamentals T₂ will transform to the totally symmetric A₁ and the degenerate E, resulting in the splitting of these bands. At the same time, the inactive fundamentals A_1 and E of the T_d symmetry turn out to be active or enhanced in intensity. From a number of complexes prepared so far²⁰⁻²³ the bands that appear to be most sensitive to the nature of the bonding are those derived from the T₂—CH₂ rocking and the T₂—CNC deformation modes. Thus, the infrared spectra of (hmta) · 2 Br₂ (Ref.²⁴) whose crystal structure is known²⁵ showed appreciable splitting of the bands around 1 240 cm⁻¹, $1010\,\mathrm{cm^{-1}}$, $812\,\mathrm{cm^{-2}}$, $670\,\mathrm{cm^{-1}}$ and $511\,\mathrm{cm^{-1}}$. Similar was the case for $(hmta) \cdot Br_2$ and $(hmta) \cdot I_2$ and in a number of other complexes^{20,21,26}, although in some cases, the most convenient criterion used was the splitting of the bands around 1250 cm⁻¹ and 1010 cm⁻¹ (Ref.^{24,26}), and in other cases the splitting of the band around 511 cm⁻¹ (Ref.⁷).

From Table 2 we observe that the bands around $1250\,\mathrm{cm^{-1}}$ and $1010\,\mathrm{cm^{-1}}$ exhibit appreciable splitting and are in general agreement with previously published data on similar complexes (Fig. 1).

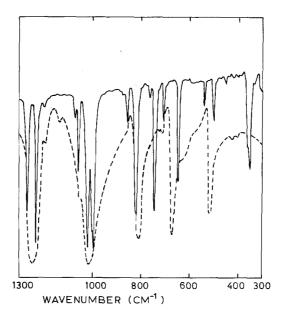


Fig. 1. Infrared spectra of *hmta* (broken line) and its 1:1 complex with gold trichloride (solid line)

Hexamethylenetetramine exhibits a sharp singlet in its ¹H NMR spectrum, indicating the equivalence of all the protons in this molecule, which is to be expected from a consideration of its molecular model. Similarly, a single resonance was found for all carbon atoms²⁷. The ¹H and ¹³C NMR peaks of the gold complex shift to considerably lower frequencies (0.4 ppm and 0,42 ppm respectively) indicating that there is an appreciable interaction of the metal ion with the nitrogen of the ligand. Similar results were obtained from infrared data for various pyridine and substituted pyridine complexes with gold trichloride²⁸. Although the possibility of polymeric structures, where hexamethylenetetramine is acting as a bridging ligand, cannot be excluded, the data presented strongly suggest that the gold and platinum are interacting directly with a single nitrogen of the ligand.

References

- ¹ Mizuno J., J. Phys. Chem. Japan 15, 8, 1412 (1960); 16, 8, 1574 (1961).
- ² Barbieri G. A., Tettamanzi A., Atti Reale Accad. Naz. dei Lincei 15, 887 (1932).
- ³ Scagliarini G., Cesari C. C., Gazz. Chim. Ital. **64**, 742 (1934).
 - 3 Monatshefte für Chemie, Vol. 114/1

- ⁴ Mazzarella L., Kovacs A. L., DeSantis P., Liquori A. M., Acta Crystallogr. 22, 1, 65 (1967).
- ⁵ Kovacs A. L., Mazzarella L., Ric. Sci. **36**, 466 (1966).
- ⁶ Buhannic M. M., Guerchais M. J. E., Rev. Chim. Miner. 8, 111 (1971).
- ⁷ Nagase K., Yokobayashi H., Sone K., Bull. Chem. Soc. Japan 49, 1563 (1976).
- ⁸ Allan J. R., Brown D. H., Lappin M., J. Inorg. Nucl. Chem. **32**, 2287 (1970).
- ⁹ Balicheva T. G., Pologikh I. V., Zhur. Neorg. Khim. **20**, 3202 (1975).
- ¹⁰ Balicheva T. G., Pologikh I. V., Lovachev D. I., Statelova A. T., Zhur. Neorg. Khim. 20, 158 (1975).
- ¹¹ Mak T. C. W., Acta Crystallogr. part A, Suppl. A 37, C-225 0.9.4-07 (1981).
- ¹² Pickardt J., Acta Crystallogr. part A, Suppl. A 37, C-228 09.4-17 (1981).
- ¹³ Michelet P. A., Viossat B., Khodadad P., Rodier N., Acta Crystallogr. B 37, 2171 (1981).
- ¹⁴ Sadler P. J., Structure and Bonding (Berlin) 28, 171 (1976).
- ¹⁵ Lorber A., Simon T. M., Gold Bulletin **12**, **149** (1979).
- ¹⁶ Rosenberg B., Pt. Metal Rev. **15**, 42 (1971).
- ¹⁷ Cleare M. J., Hoeschele J. D., Pt. Metal Rev. 15, 42 (1973).
- ¹⁸ Cleare M. J., Hydes P. C., in: Metal Ions in Biological Systems (Sigel H., ed.), Vol. 11, p. 1. New York: Marcel Dekker.
- ¹⁹ Shiro Y., Nakamura S., Murata H., Negita H., J. Sci. Hiroshima Univ. 31, 131 (1967).
- ²⁰ Kohout V. J., Hvastijova M. H., Maslejova A., Gazo J., Omelka L., Z. anorg. allg. Chem. 434, 29 (1977).
- ²¹ Buhannic M. A., Guerchais J. E., Bull. Soc. Chem. **1971**, 403.
- ²² Bowmaker G. A., Hannan S. F., Aust. J. Chem. 24, 2237 (1971).
- ²³ Marzocchi M., Ferroni E., Gazz. Chim. Ital. **91**, 1200 (1961).
- ²⁴ Bowmaker G. A., Hannan S. F., Aust. J. Chem. **25**, 1151 (1972).
- ²⁵ Eia G., Hassel O., Acta Chem. Scand. **10**, 139 (1956).
- ²⁶ Negita H., Nishi Y., Koga K., Spectrochim. Acta **21**, 2144 (1965).
- ²⁷ Farminer A. R., Webb G. A., Org. Magn. Resonance 8, 102 (1976).
- ²⁸ Cattalini L., Clark R. J. H., Orio A., Poon C. K., Inorg. Chim. Acta 2, 62 (1968).